Random walks on semaphore codes and delay de Bruijn semigroups
نویسندگان
چکیده
منابع مشابه
De Bruijn cycles for covering codes
A de Bruijn covering code is a q-ary string S so that every qary string is at most R symbol changes from some n-word appearing consecutively in S. We introduce these codes and prove that they can have length close to the smallest possible covering code. The proof employs tools from field theory, probability, and linear algebra. We also prove a number of “spectral” results on de Bruijn covering ...
متن کاملSemigroups , Rings , and Markov
We analyze random walks on a class of semigroups called \left-regular bands". These walks include the hyperplane chamber walks of Bidi-gare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable and we calculate the eigenvalues and multiplicities. The methods lead to explicit formulas for the projections onto the eigenspaces. As examples of ...
متن کاملBinary De Bruijn sequences for DS-CDMA systems: analysis and results
Code division multiple access (CDMA) using direct sequence (DS) spread spectrum modulation provides multiple access capability essentially thanks to the adoption of proper sequences as spreading codes. The ability of a DSCDMA receiver to detect the desired signal relies to a great extent on the auto-correlation properties of the spreading code associated to each user; on the other hand, multi-u...
متن کاملMöbius Functions and Semigroup Representation Theory Ii: Character Formulas and Multiplicities
We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota’s theory of Möbius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete descr...
متن کاملSemigroups, Rings, and Markov Chains
We analyze random walks on a class of semigroups called ``left-regular bands.'' These walks include the hyperplane chamber walks of Bidigare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable and we calculate the eigenvalues and multiplicities. The methods lead to explicit formulas for the projections onto the eigenspaces. As examples of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 26 شماره
صفحات -
تاریخ انتشار 2016